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Abstract: We consider asymmetrically warped brane models, or equivalently brane mod-

els where the background metric is characterized by different time and space warp factors.

The main feature of these models is that 4D Lorentz symmetry is violated for fields which

propagate in the bulk, such as gravitons. In this paper we examine the case of bulk photons

in asymmetrically warped brane models. Although our results are general, we examine here

two specific but characteristic solutions: 1) AdS-Schwarzschild 5D Black Hole solution and

2) AdS-Reissner Nordstrom 5D Black Hole solution. We show that the standard Lorentz

invariant dispersion relation for 4D photons is corrected by nonlinear terms which lead

to an Energy-dependent speed of light. Specifically, we obtain a sub-luminous Energy-

dependent refractive index of the form neff(ω) = 1 + cG ω2, where ω is the energy of the

photon, and the factor cG is always positive and depends on the free parameters of the

model. Finally, comparing the results with recent data from the MAGIC Telescope, claim-

ing a delayed arrival of photons from the Active Galactic Nucleus of Mk501, we impose

concrete restrictions to the two sets of models examined in this work. We shall also discuss

briefly other possible astrophysical constraints on our models.
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1. Introduction and motivation

Theorists, in an attempt to solve the hierarchy problem, invented new string theory models

with relatively large extra dimensions. The early realization [1] that the string scale is an

arbitrary parameter, and can be as low as a TeV scale, lead naturally to the consideration of

models with large extra dimensions [2, 3], introducing the so-called brane-world models, in

which the standard model particles are assumed to be localized in a 3D brane (our world),

embedded in a multi-dimensional manifold (bulk). Subsequently, models in which the bulk

space time is warped have been proposed [4, 5]. In such models, the extra dimensions could

be: (i) finite, if a second parallel brane world lies at a finite bulk distance from our world [4],

thus providing a new hierarchy of mass scales, or: (ii) infinite, if our world is viewed as an

isolated brane, embedded in an (infinite) bulk space [5]. In fact, it is the presence of such

warp factors that provides [4] in the case (i) a “resolution” to the hierarchy problem. The

important problem of stabilization of the extra dimension, in the case of two brane models,

has been considered in refs. [6].

Such brane or string models lead to no apparent contradictions with the present-day

observations regarding four dimensional physics [7], although many falsifiable predictions

can be made of relevance to either particle physics colliders, such as LHC and future

linear colliders, or astrophysical/cosmological measurements. In the standard brane world
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scenario, only gravitons are allowed to propagate in the bulk, contrary to the standard

model particles, which are constrained to lie on the brane. We call this the Standard

String/Brane-World scenario (SSBW).

Beyond the SSBW scenario, there are models in which all or some of the standard

model particles, can live in the bulk. The original scenario of universal extra dimensions,

where standard model particles possess KK excitations, was presented for compactified

dimensions, R ≤ 10−17cm, in [8]; the connection with brane worlds of Randall-Sundrum

(RS) type [4] can be achieved by considering as “bulk” the available space between the

two parallel branes. Note, that in the case of the first RS model the size of the extra

dimension is very short: in particular it is of the order of the Planck length. In such a case,

gauge fields and fermions are not necessarily localized on the brane, see for example [9]

and references therein. For our purposes in this article, we call this second scenario the

Extended String/Brane-World scenario (ESBW).

There are numerous generalizations of the above generic models, including, for instance,

topological defects along the extra dimension(s), or higher-order curvature corrections, see

for example refs. [10 – 20]. Also, there are models in which the standard model particles

are localized on the brane dynamically, via a mechanism which is known as layer-phase

mechanism, see for example refs. [21 – 26] and references there in. Moreover, an effective

propagation of standard model particles in the bulk may characterize the so-called “fuzzy”

or fluctuating-thick-brane-world scenarios [27], according to which our brane world quan-

tum fluctuates in the bulk. In such a case, there are uncertainties in the bulk position of

the brane world, resulting in an “effectively” thick brane [28]. In such a situation, even the

standard SSBW scenario would result in an “effective” propagation of the standard model

particles in the bulk. In such “effectively thick” brane models [28], the wavefunction of a

standard model particle has an extent in the bulk region, the latter being defined as the

“effective” thickness of the “fat brane”, of string (or Planck) size.

In the previous part we presented a short review on brane world models, in what

follows we focus to the so called asymmetrically warped brane models, and we give the

essential references for the understanding of this paper. In particular, we will consider the

following generic ansatz for the metric in five dimensions

ds2 = −α2(z)dt2 + β2(z)dx2 + γ2(z)dz2 (1.1)

where z parameterizes the extra dimension, α(z) is the time warp factor and β(z) is the

three-dimensional-space warp factor.1 Models which are described by metrics of the form

of eq. (1.1), in which the time and three-dimensional-space warp factors are different, are

often called asymmetrically warped brane models. In these models, although the induced

metric on the brane (localized at z = 0) is Lorentz invariant upon considering the case

α(0) = β(0), the metric of eq. (1.1) does not preserve 4D Lorentz invariance in the bulk

since α(z) 6= β(z) for z 6= 0.

1Although one can set γ to one by a coordinate transformation in static models, this is not the case

in more general cases with a time dependent γ(z, t), which are of interest in cosmology [29], and which

we make use here. It is in this sense we base our analysis here in the frame where the 5D metric has the

form (1.1).
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Models with equal warp factors, such as the RS model [4, 5], have so far attracted

the main attention, since 4D Lorentz invariance is assumed as a fundamental symmetry of

nature. However, brane models with asymmetrically warped solutions, like that of eq. (1.1)

above, have also been constructed [29 – 33]. We note here that the static asymmetric

solutions that are presented in refs. [30 – 33] presuppose the existence of extra matter in the

bulk,2 hence these models luck the simplicity of construction characterising the RS-model.

Although symmetric3 brane models are the most important, as they incorporate exact

4D Lorentz symmetry, at least in our opinion there is an argument in favor of asymmetri-

cally warped space-times, presented in detail in ref. [29]. Static solutions, like that of RS

model, can be used approximately only for a short period of time around our cosmological

epoch t0. For larger periods the complete cosmological evolution must be considered. In

such a cosmological context the metric depends on the comoving time coordinate t, and

has the form:

ds2 = −α2(z, t)dt2 + β2(z, t)dx2 + γ2(z, t)dz2 (1.2)

Note, that the above time depended solutions have in general different space and time

warp factors. The corresponding static metric, which describes our universe in the short

time period humans exist, which is very small compared to the cosmological time scale of

the evolution of the Universe, is obtained if we set t = t0 in eq. (1.2). According to this

philosophy, in general, the metric of eq. (1.2) evolves to an asymmetrically warped solution

for t = t0, or equivalently we expect that α(z, t0) 6= β(z, t0). Although, we have given

arguments on the possibility that such vacua can indeed characterize cosmological brane

models, nevertheless we cannot say with certainty that they cannot decay to standard

Minkowski vacua. However, since they cannot be ruled out on theoretical grounds, at least

presently, it worths imposing constraints on their parameters phenomenologically, and this

is what we aim to do in this article.

The question then arises as to how one can constrain or exclude/falsify brane models

with asymmetric solutions of the form of eq. (1.1), on account of present (or immediate-

future) experimental bounds on (local) Lorentz symmetry violation in the bulk. In the

SSBW case, where the bulk is completely unaccessible by the standard model particles,

Lorentz violation signals can be observed only by bulk particles in the gravitational sector,

like gravitons, or at most particles neutral under the standard model group, e.g. right-

handed sterile neutrinos. Bulk fields can ”see” the asymmetry between the warp factors

in the extra dimension, whilst standard-model particles, which are rigidly “pinned” on the

brane, can only ”see” equal warp factors α(0) = β(0). Gravity effects which could reveal

4D Lorentz violation are described in ref. [31] (see also refs. [34 – 36]) where superluminous

propagation of gravitons is possible for specific models with asymmetric solutions. However,

since the detection of gravitons is still not an experimental fact, such Lorentz violations are

2For example, the solution or ref. [30] requires a constant electric field along the extra dimension, and a

fine tuning similar to that of the RS model.
3With the terminology symmetric solutions we mean here metrics with equal space and time warp

factors, or equivalently metrics which possess SO(3,1) symmetry, like that of RS model.
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still compatible with the current experiments, both terrestrial and astrophysical, probably

awaiting the future detection of gravitational waves in order to be constrained significantly.

However, in the ESBW scenario, where some or all of the standard model particles, are

allowed to propagate in the bulk, such Lorentz-Invariance-violating effects can be bounded

by high precision tests of Lorentz symmetry, since now, 4D Lorentz violation may be re-

vealed even in the standard model sector. In this way, stringent restrictions to asymmetric

models can be imposed by astrophysical observations and other high-energy experimen-

tal tests.

In this paper, we aim to study the propagation of bulk photons in an asymmetrically

warped metric background by solving the (classical) equations of motion for a 5D massless

U(1) Gauge field in the curved background of eq. (1.1). We shall demonstrate that the

standard Lorentz invariant dispersion relation for 4D photons possesses nonlinear correc-

tions, which lead to an energy-dependent speed of light on the brane. Specifically, we shall

obtain a sub-luminal refractive index for photons neff(ω) = 1+cG ω2, where ω is the energy

of the photon, and the factor cG is always positive and depends on the free parameters of

the models. Finally, comparing these results with the data of the Magic experiment on a

delayed arrival of highly energetic photons from the distant galaxy Mk501 [37, 38] we shall

set concrete restrictions to our models. We shall also discuss briefly other astrophysical

constraints on our models.

2. 5D U(1) Gauge fields in asymmetrically warped spacetimes

In this section we study bulk photons in an asymmetrically warped metric background of

the form (1.1). Although, our conclusions are valid for the quite general ansatz of eq. (1.1),

nevertheless it is convenient to demonstrate our results for specific classes of solutions to the

5D Einstein Equations. In what follows, we shall consider a slightly modified RS-metric

which is asymmetrically warped, and it satisfies the bulk Einstein equations. We shall

consider a class of solutions which are known as 5D AdS-Reissner-Nordstrom Black Hole

Solutions [31]. These solutions are presented in detail in the following subsection, 2.1. In

subsection 2.2 we show that is possible to write the 5D AdS-Reissner-Nordstrom Solution as

a linearized perturbation around the RS metric. Then, it is not difficult to mimic the S1/Z2

structure of the first RS-model [4]. However, the novel feature of our model is that the

background metric deviates slightly from the standard RS-metric, and as a result there is a

small violation of 4D lorentz symmetry in the bulk. In section 2.3 we study the propagation

of bulk photons in the above-mentioned metric background. At this stage, we consider it as

instructive to remind the reader that the extra dimension in the first RS-model is assumed

to be compact and very small, of the order of the Planck length (ℓP ∼ 10−33cm). Hence, our

assumption of bulk Gauge field is not in conflict with the current observations in particle

accelerators, as we have also emphasized in the introduction.

2.1 5D AdS-Reissner-Nordstrom solutions

We consider an action which includes 5D gravity, a negative cosmological constant Λ, plus
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a bulk U(1) Gauge field [31]:

S =

∫

d5x
√

g

(

1

16πG5
(R(5) − 2Λ) − 1

4
BMNBMN

)

+

∫

d4x
√

g(brane)Lmatter, (2.1)

where G5 is the five dimensional Newton constant, and BMN = ∂MHN −∂NHM is the field

strength of the U(1) Gauge field HM , with M,N = 0, 1 . . . 5. Note, that this additional

bulk Gauge field does not interact with charged matter on the brane, so it must not be

confused with the usual electromagnetic field AM , representing a bulk photon, which will be

introduced in the next subsection. The four dimensional term in the action corresponds to

matter fields localized on the brane, which is assumed located at r = r0, and are described

by a perfect fluid with energy density ρ and pressure p. This brane term is necessary for

the solution of eq. (2.4) to satisfy the junction conditions on the brane, as we will explain

in detail in the next section. The corresponding Einstein equations can be written as4

GMN + ΛgMN = 8πG5

(

δ(r − r0)

√

|g(brane)|
√

|g|
T (matter)

µν δµ
Mδν

N + T
(B)
MN

)

(2.2)

where the energy momentum tensor for the U(1) Gauge field is:

T
(B)
MN = BMP B P

N − 1

4
gMNBPSBPS (2.3)

For the metric of the black hole solution we make the ansatz

ds2 = −h(r)dt2 + ℓ−2r2dΣ2 + h(r)−1dr2 (2.4)

where dΣ2 = dσ2 + σ2dΩ2 is the metric of the spatial 3-sections, which in our case are

assumed to have zero curvature, in agreement with the current astrophysical phenomenol-

ogy, pointing towards spatial flatness of the observable Universe. Moreover, ℓ is the AdS

radius which is equal to
√

− 6
Λ . By solving Einstein equations (2.2) we obtain:

h(r) =
r2

ℓ2
− µ

r2
+

Q2

r4
(2.5)

where µ is the mass (in units of the five dimensional Planck scale) and Q the charge of

the 5D AdS-Reissner-Nordstrom black hole. This, of course, presupposes the existence of

extra bulk matter, namely a point-like source with mass µ and charge Q. Note that, in the

case of nonzero charge Q, a non-vanishing component B0r of the bulk field-strength tensor

BMN :

B0r =

√
6√

8πG5

Q

r3
, (2.6)

is necessary in order for the solution to satisfy the pertinent Einstein-Maxwell equations.

In the limit Q = 0, which corresponds to the 5D AdS-Schwarzschild Black Hole, the

bulk vector field HM becomes redundant. In this article we shall also examine this case, in

connection with effects on photon propagation in 4D and, as we shall see, the presence of the

extra charge in the Reissner-Nordstrom case does not affect qualitatively the conclusions

regarding the order of magnitude of the asymmetry between the warp factors in order to

get consistency with the current phenomenology.

4In the case of a second brane at the position r′0 we need an additional δ(r− r′0) term in equation (2.2).
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2.2 Construction of two-brane models and null energy condition

We will describe now how one can use the 5D AdS-Reissner-Nordstrom vacuum in order

to construct brane models. As a first step, we place a brane at the position r = r0. We

next assume that for r > r0 the 5D metric is given by eq. (2.4), while for r < r0 the metric

is given by eq. (2.4) upon the replacement r ↔ r2
0/r. The metric obtained this way is Z2-

symmetric upon the replacement r ↔ r2
0/r. The next step is to glue the two independent

slices of the metric by including a perfect fluid energy momentum tensor of the form

T ν
µ = Diag(−ρ, p, p, p) (2.7)

and satisfying the Israel junction conditions on the brane, where ρ is the energy density

and p is the pressure. The equation of state is parametrised as usual by: ω = p/ρ.

We remind the reader, that 5D black holes suffer from a singularity at r = 0, which may

be naked or not, depending on the magnitudes of the parameters Q,µ, ℓ. In particular,

if Q4 < 4
27µ3ℓ2 the 5D black hole has two horizons [31]. In this case, a single brane

construction is possible as a horizon can isolate the brane from the singularity. Contrary

to the Randall-Sundrum (RS)-model, this class of brane models has the advantage that

one does not need a fine tuning between the energy density ρ on the brane and the 5D

cosmological constant. This self-tuning property of the AdS-Reissner-Nordstrom black

holes serves as a possible solution to the cosmological constant problem [31].

However, if we demand the existence of a horizon, the matter we have to put on the

brane violates the null energy condition ρ + p ≥ 0 (or ω ≥ −1), see Ref [31]. This is a

quite embarrassing situation, as we have to introduce unconventional sources like ghosts. In

refs. [34, 35] the authors present a complete investigation on this issue including cases with:

a) the presence of external fields in the bulk, b) the existence of higher-derivative terms in

the action of Gauss-Bonnet type and c) models with the Z2 symmetry relaxed. The result of

such analyses is a no-go theorem, according to which it is impossible to shield the singularity

from the brane by a horizon, unless the null energy condition ρ + p ≥ 0 is violated.

Nevertheless, in the current work we are not concerned with a solution to the cosmolog-

ical constant problem. Our purpose is simply to construct brane models which incorporate

a Lorentz symmetry violation due to the difference of the space and time warp factors.

In this case we can isolate the singularity from the brane by putting a second brane at a

position r = r′0 (between the first brane and the singularity). Hence, we have a two-brane

construction similar to the first RS-model, in which the two branes are located at the fixed

points of an orbifold S1/Z2. Note, that because the Israel junction conditions must be

satisfied also on the second brane, we have to assume an additional energy momentum

tensor of a perfect fluid, with energy density ρ′, pressure p′ and ω′ = p′/ρ′, localized on the

second brane. We also consider the physically interesting case in which ǫ ≡ r′0/r0 ∼ 10−6

where the large hierarchy between the Planck and electroweak scale is satisfied. However,

in the case of two-brane models fine-tuning relations between 4D energy densities and 5D

dimensional cosmological constant are unavoidable.

The question that arises at this point is wether two-brane constructions that respect

the null energy condition on the branes do exist. An analysis towards this direction can

– 6 –
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be found in ref. [36]. We have also performed independently a similar analysis, which

confirms these results, but it is quite lengthy to be presented in this paper, as this would

take one out of the main point of this work. For our purposes here, it suffices to state that

construction of several classes of two-brane models in the 5D AdS-Reissner-Nordstrom

vacuum is possible, without violation of the null energy condition, and hence two-brane

constructions are acceptable.

2.3 5D AdS-Reissner-Nordstrom Solution as a linearized perturbation around

the Randall-Sundrum metric

In order to achieve our aim, which is to write the 5D AdS-Reissner-Nordstrom solution as a

linearized perturbation around the RS metric, we perform the following change of variables

r → z(r) in eq. (2.4):

r = r0e
−k z , for z > 0

r = r0e
k z , for z < 0 , (2.8)

If, in addition, we make the rescaling xµ → r0

ℓ xµ (µ = 0, . . . 3), we obtain:

ds2 = −a2(z)h(z)dt2 + a2(z)dx2 + h(z)−1dz2 (2.9)

where a(z) = e−k|z|, and k = ℓ−1 is the inverse AdS5 radius. For the function h(z) we

obtain:

h(z) = 1 − δh(z), δh(z) =
µℓ2

r4
0

e4k|z| − Q2ℓ2

r6
0

e6k|z| (2.10)

As we describe in detail in section 2.2, it is not difficult to construct two brane models.

Now, the Z2 symmetry r ↔ r2
0/r if it expressed in the frame of the new parameter z, reads

z → −z. In addition, the positions of the branes which are located at r0 and r′0 = r0ǫ in the

original coordinate system, in the new coordinate system are determined by the equations

z = 0 and z = πrc correspondingly, where ǫ = e−kπrc and rc is radius of the compact

extra dimension.

Finally, we assume that |δh(z)| ≪ 1 in the interval 0 < z < πrc, or equivalently we

adopt that δh(z) is only a small perturbation around the RS-metric. This implies that r0,

which is the radius that determines the position of the brane in the bulk, is (comparatively)

a very large quantity. In particular, we have to satisfy both the following two inequalities

r2
0ǫ

2 ≫ √
µℓ and r3

0ǫ
3 ≫ Qℓ.

2.4 Equation of motion for the bulk photon and non-standard vacuum refractive

index

In this subsection we will study the case of a 5D massless U(1) gauge boson AN in the

background of an asymmetrically warped solution of the form of eq. (2.9). We stress

that the gauge field AN must not be confused with the gauge field HN , introduced in

the previous section. As we will see later, we will identify the zero mode of AN with the

standard four dimensional photon. On the other hand HN is an additional bulk field which

– 7 –
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does not interact with the charged particles on the brane. The corresponding equation of

motion for AN reads:
1√
g
∂M

(√
ggMNgRSFNS

)

= 0 , (2.11)

with FNS = ∂NAS − ∂SAM , and N,S = 0, 1, . . . 5. In the background metric of eq. (2.9),

eq. (2.11) gives:

−∂z(a
2(z)h(z)∂zAj) −∇2Aj +

1

h(z)
∂2

0Aj = 0, j = 1, 2, 3 , (2.12)

where we have considered the Coulomb gauge condition:

~∇ · ~A = 0, A0 = 0, Az = 0 , (2.13)

which is suitable for the case of a Lorentz violating background. On setting in eq. (2.11):

Aj(x, z) = eip·xχj(z), pµ = (−ω,p) (2.14)

and keeping only the linear terms in δh(z), we obtain

−∂z

{

a2(z) [1 − δh(z)] ∂zχ
}

+
{

p2 − [1 + δh(z)] ω2
}

χ = 0 (2.15)

where for brevity we have dropped the index j from χ. Note that the spectrum of eq. (2.15)

is discrete, due to the orbifold boundary conditions [4], χ′(0) = 0 and χ′(πrc) = 0 (where

the prime denotes a z-derivative). Hence we add from now on an index n (n = 0, 1, 2, 3, . . .),

denoting the nth eigenstate of the equation.

Upon applying the formalism of time-independent perturbation theory, eq. (2.15) can

be written as

(H0 + ∆H)χn = m2
n χn, m2 = ω2 − p2 . (2.16)

The hermitian operator

H0 = −∂z

(

a2(z)∂z

)

, (2.17)

which is of zeroth order in δh(z), corresponds to the unperturbed Hamiltonian, while the

hermitian operator

∆H = −δh(z) ω2 + ∂z(a
2(z)δh(z)∂z) (2.18)

which is linear in δh(z), corresponds to the perturbation Hamiltonian.

The quantity ∆H is indeed a small perturbation when compared to H0, since the

relative discrepancy δh(z) between the space and time warp factors is assumed to be very

small (|δh(z)| ≪ 1) in the interval [0, πrc].

We need to find a complete set of eigenfunctions χ
(0)
n (n = 0, 1, 2, . . .) of the unper-

turbed Schrödinger equation

H0χ
(0)
n =

(

m(0)
n

)2
χ(0)

n (2.19)

It can be seen straightforwardly that for n = 0,

m
(0)
0 = 0 , (2.20)
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is an eigenvalue of eq. (2.19), or equivalently eq. (2.19) possesses a zero mode, which

corresponds to the 4D photon. The corresponding wave function is constant in the interval

[0, πrc]. For our purposes here we shall omit the detailed derivation of the eigenvalue

spectrum of (2.19), as this has been done previously in refs. [39, 40], where we refer the

interested reader for details. It suffices to mention that the nonzero eigenvalues are:

m(0)
n = xn k e−kπrc, n = 1, 2, 3, . . . (2.21)

where xn are the roots of the zeroth order Bessel function J0(xn) = 0. On adopting

krc ∼ 12, which is the standard choice in order to connect electroweak (ew) and Planck

scales (MP = ekπrcmew) in a RS framework [4], one obtains that:

m(0)
n ∼ TeV , n = 1, 2, . . . . (2.22)

The corresponding eigenfunctions are:

χ
(0)
0 =

1

N0
, N0 =

1√
πrc

(2.23)

χ(0)
n =

1

Nn
ekzJ1

(

m
(0)
n

k
ekz

)

, Nn =
ekπrc

√
2k

J1(xn) (2.24)

where the coefficients N0, Nn are defined by the normalization condition:
∫ πrc

0
χ(0)

n (z)χ(0)
m (z)dz = δmn (2.25)

The lowest energy eigenvalue m2
0 of eq. (2.16) can be expanded as:

m2
0 =

(

m
(0)
0

)2
+
(

m
(1)
0

)2
+
(

m
(2)
0

)2
+ . . . (2.26)

where the zeroth order correction (zero mode) is m
(0)
0 = 0 (c.f. (2.20). The first and second

order corrections are obtained by the formulae of time-independent perturbation theory:

(m
(1)
0 )2 = 〈χ(0)

0 |∆H|χ(0)
0 〉 (2.27)

(m
(2)
0 )2 =

∑

n 6=0

|〈χ(0)
0 |∆H|χ(0)

n 〉|2
(

m
(0)
0

)2
−
(

m
(0)
n

)2 (2.28)

Upon using eqs. (2.26), (2.27) and (2.28), we obtain:

ω2 − p2 = −aG ω2 − bG ω4 (2.29)

with

aG =

∫ πrc

0
dz
(

χ
(0)
0 (z)

)2
δh(z) (2.30)

bG =
∑

n 6=0

1
(

m
(0)
n

)2

(
∫ πrc

0
dz χ

(0)
0 (z)χ(0)

n (z)δh(z)

)2

(2.31)
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Note, that the derivative term in (2.18) does not contribute to aG and bG, as it acts on a

constant eigenfunction (zero mode). The parameters aG and bG are independent from the

(photon) energy ω, and bG is always positive. Eq. (2.29) then gives:

|p| = ω
√

(1 + aG) + bGω2 (2.32)

According to eq. (2.32), the phase velocity of light is equal to

vph =
ω

|p| =
1

√

(1 + aG) + bGω2
(2.33)

or equivalently, for bGω2 ≪ 1:

vph ≃ 1
√

(1 + aG)
− bG

2(1 + aG)
3

2

ω2 (2.34)

where ω is the energy of the photon.

On the other hand, for the photon’s group velocity we have:

vgr =
dω

d|p| =

√

(1 + aG) + bGω2

(1 + aG) + 2bGω2
(2.35)

and the corresponding formula for bG ≪ 1 is

vgr ≃ 1
√

(1 + aG)
− 3 bG

2(1 + aG)
3

2

ω2 (2.36)

One can define the constant velocity of light in standard vacuo as the low energy limit

(ω → 0) of the phase velocity of eq. (2.34)

clight =
1

√

(1 + aG)
(2.37)

This definition is reasonable, if we take into account that the velocity of light is measured

in practice only for low energy photons. We need very high energies, in our case of order

103 TeV or higher, in order for the contribution of the energy dependent term in eq. (2.34)

to be significant, exceeding the accuracy with which the velocity of light is presently known.

From eqs. (2.34) and (2.37) we then obtain an effective subluminal refractive index for

the non-standard vacuum provided by our brane-world constructions:

neff(ω) =
clight

vph
= 1 +

bG

2(1 + aG)
ω2 . (2.38)

This is the main result of this paper. An issue, we would like to emphasize, is that the phase

and group velocities (eqs. (2.34) and (2.36) respectively), as well as the effective refractive

index of eq. (2.38), depend quadratically on the photon energy ω. Moreover, we note that

equation (2.38) is a perturbative result which is valid only for energies ω ≪ 1/
√

bG. For

larger energies (for example in the case of ultra high energies cosmic rays ω ∼ 1020 eV),

eq. (2.38) is not valid and a full nonperturbative treatment is necessary. In this limit the

subluminal nature of the refractive index may be lost.
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According to the refractive index (2.38), photons with different energies propagate

with different velocities. Due to the sub-luminal nature of the refractive index there will

be delays in the arrival times of more energetic photons, as compared with the lower-energy

ones, provided of course that simultaneous emission of the various modes is assumed at

the source. Hence, we will observe a time lag of the arrival times of photons which were

emitted simultaneously by a remote astrophysical source, with the lower energy photons

arriving first. It is worth noticing that the effective refractive index (2.38) is independent

on the polarization of photons, or equivalently our model does not predict birefringence. If

we had included higher order corrections to the electromagnetic lagrangian (e.g. in the form

of a Born Infeld lagrangian) birefringence may occur. In the next section (section 3) we

compare our result with the data of Magic experiment in order to set bounds to our model.

3. Setting bounds: comparison with MAGIC and other data

In the previous section we examined the case of bulk photons in asymmetrically warped

brane models and we derived an equation (eq. (2.38)) which implies a nontrivial refractive

index for 4D photons. In this section we aim to use this modified quadratic dispersion

relation in order to set bounds to our model, via a direct comparison with the experimental

data of Magic. We have used the MAGIC Telescope observation of photons from Mk501 [37,

38], because this is the only case at present of an observed effect on a delayed photon arrival,

with the higher energy photons arriving later. The constraints we derive, in this section,

for the parameters of our model, are the most stringent on quadratically modified photon

dispersion relations, as far as direct photon observations are concerned. Note, that there are

other experiments which set bounds on quadratically modified photon dispersion relations,

however they do not give more stringent constraints than Magic effect. For example in

subsection 3.2, we compare with the recent data from H.E.S.S. Telescope [41], and as we see

the magic constraints are the most stringent. Finally, in subsection 3.2, we discuss briefly

possible constraints to our model which are not based on the quadratic dispersion relation

of eq. (2.38), including the cases of the fermions and the ultra high energy cosmic rays.

3.1 Comparison with MAGIC data

We wish now to compare the time delays of the more energetic photons, implied by the

dispersion relation (2.38), with experimentally available data. In view of the quadratic

suppression of the non trivial vacuum effects with the Planck scale, it becomes evident

that the higher the energy range of the photons detected, the higher the sensitivity of the

pertinent experiment to such effects. Recently, experimental data from observations of the

MAGIC Telescope [37] on photon energies in the TeV range have become available. It

therefore makes sense to compare the time delays predicted in our models, due to (2.38),

with such data, thereby imposing concrete restrictions on the free parameters of the models.

For completeness let us first review briefly the relevant observations [37, 38]. MAGIC is

an imaging atmospheric Cherenkov telescope which can detect very high energy (0.1 TeV-

30 TeV) electromagnetic particles, in particular gamma rays. Photons with very high en-

ergy (VHE) are produced from conversion of gravitational energy at astrophysical distances
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from Earth, when, say, a very massive rotating star is collapsing to form a supermassive

black hole. Astrophysical objects like this are called blazars and are active galactic nu-

clei (AGN).

The observations of MAGIC during a flare (which lasted twenty minutes) of the rela-

tively nearby (red-shift z ∼ 0.03) blazar of Markarian (Mk) 501 on July 9 (2005), indicated

a 4 ± 1 min time delay between the peaks of the time profile envelops of photons with

energies smaller than 0.25 TeV and photons with energies larger than 1.2 TeV. Possible

interpretations of such delays of the more energetic photons have already been proposed.

Conventional (astro)physics at the source may be responsible for the delayed emission of

the more energetic photons, as a result, for instance, of some non-trivial versions of the

Synchrotron Self Compton (SSC) mechanism [37]. It should be noted at this stage that the

standard SSC mechanism, usually believed responsible for the production of VHE photons

in other AGN, such as Crab Nebula, fails [37] to explain the results of MAGIC, as a rela-

tive inefficient acceleration is needed in order to explain the O(min) time delay. Modified

SSC models have been proposed in this respect [42], but the situation is not conclusive.

This prompted speculations that new fundamental physics, most likely quantum-gravity

effects, during propagation of photons from the source till observation, may be responsible

for inducing the observed delays, as a result of an effective refractive index for the vacuum,

see for example ref. [43] and references therein.

Exploring the fact that MAGIC had the ability of observing individual photons, a nu-

merical analysis on the relevant experimental data has been performed in [38], which aimed

at the reconstruction of the original electromagnetic pulse by maximizing its energy upon

the assumption of a sub-luminal vacuum refractive index with either linear or quadratic

quantum-gravity-scale suppression:

neff(ω) = 1 +

(

ω

MQG(n)

)n

, n = 1, 2 (3.1)

The analysis in [38] resulted in the following values for the quantum-gravity mass scale at

95 % C.L.

MQG(1) ≃ 0.21 1018 GeV, MQG(2) ≃ 0.26 1011 GeV (3.2)

We must emphasize at this point that many Quantum Gravity Models seem to predict

modified dispersion relations for probes induced by vacuum refractive index effects, which

appear to be different for each quantum gravity approach, not only as far as the order of

suppression by the quantum gravity scale is concerned, but also its super- or sub-luminal

nature. Some models, for instance, entail birefringence effects, which can be severely

constrained by astrophysical measurements [44]. There are also alternative models, see for

example refs. [45, 46].

In [47], a non-perturbative mechanism for the observed time delays has been proposed,

based on stringy uncertainty principles within the framework of a string/brane theory

model of space-time foam. The model entails a brane world crossing regions in bulk space

time punctured by point-like D-brane defects (D-particles). As the brane world moves

in the bulk, populations of D-particles cross the brane, interact with photons, which are
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attached on the brane world (SSBW scenario), and thus affect their propagation. The

important feature of the stringy uncertainty delay mechanism is that the induced delays

are proportional to a single power of the photon energy ω, thus being linearly suppressed

by the string mass scale, playing the quantum gravity scale in this model. It is important

to notice that the mechanism of [47] does not entail any modification of the local dispersion

relations of photons. In fact the induced delays are also independent of photon polarization,

so there are no gravitational birefringence effects. It is also important to notice that, in view

of the electric charge conservation, the D-particle-foam defects can interact non trivially

only with photons or at most electrically neutral particles and no charged ones, such as

electrons, to which the foam looks transparent.

As we have showed in the previous section, a sub-luminal vacuum refractive index may

characterize asymmetrically warped brane-world models, assuming propagation of photons

in the bulk. Our model, however, predicts a refractive index with quadratic dependence

on energy, c.f. (2.38). Comparing eqs. (2.38) with (3.1), we obtain:

bG

2(1 + aG)
≤ M−2

QG(2) (3.3)

The parameters aG and bG can be computed numerically by means of eqs. (2.30)

and (2.31). Note, that the deviation δh(z), the eigenvalues m
(0)
n and the eigenfunctions

χ
(0)
n are known analytically, see eqs. (2.10), (2.21), (2.23) and (2.24) above. We have

computed numerically the parameter bG for two exemplary cases: a) for an AdS-Reissner-

Nordstrom Solution (2.10), and b) for an AdS-Schwarzschild Solution (obtained by setting

Q = 0 in eq. (2.10)) . In the former case we assume for simplicity that µ and Q2/r2
0 are

of the same order of magnitude (for details see ref. [36] or the discussion in section 2.2,

see also eq. (4.2) below), and hence we can ignore the contribution of the e4kz term in

eq. (2.10). In particular we obtain:

bG ≃ 2.95 〈δh〉2 TeV−2, Ads − Reissner − Nordstrom (3.4)

bG ≃ 10 〈δh〉2 TeV−2, Ads − Schwarzschild , (3.5)

where 〈δh〉 is defined as the average value:

〈δh〉 =
1

πrc

∫ πrc

0
δh(z)dz . (3.6)

We will use 〈δh〉 in order to estimate the degree of violation of Lorentz symmetry in our

models. Taking into account eqs. (3.2), (3.3) ,(3.4) and (3.5) we find the constraints:

| 〈δh〉 |≤ 1.4 10−8 Ads − Reissner − Nordstrom (3.7)

| 〈δh〉 |≤ 0.75 10−8 Ads − Schwarzschild . (3.8)

The small values we obtain are consistent with the weak nature of 〈δh〉, as required by

treating it as a perturbation. Also we observe that the values for the average deviation

of eqs. (3.4) and (3.7) are of the same order of magnitude for both Ads-Schwarzschild

and Ads-Reissner-Nordstrom solutions. In the above analysis we ignored the effects due

– 13 –



J
H
E
P
0
1
(
2
0
0
9
)
0
5
7

to the Universe expansion, since the latter do not affect the order of magnitude of the

above bounds due to the small red shift (z ∼ 0.03) of Mk501 we restrict our discussion

in this section. The inclusion of such effects, which are essential for larger redshifts, is

straightforward [38] and does not present any conceptual difficulty.

Note, that although the parameter aG is not important for our analysis, it is crucial

when we have to make comparisons with the velocities of other particles. If we take into

account eq. (2.30) we see that aG = 〈δh〉. Hence, the parameter aG is constrained via

the equation

| aG |≤ 10−8 (3.9)

This summarizes the constraints to the asymmetrically-warped brane models with bulk

photons using the data of the MAGIC experiment.

3.2 Comparison with other data

However it is worth to be mentioned that another Telescope, H.E.S.S., looking at a flare

from another celestial object, the Active Galaxy PKS 2155-304 at a much larger distance

(red-shift z = 0.116), and emitting photons in the few-TeV energy range with a much higher

(unprecedented) statistics, has not claimed an observed delayed arrival of the most energetic

photons. The associated limit in the quadratic refractive index from such observations

was [41]:

|ζ| < 7.3 × 1019 , neff(ω) =

(

1 + ζ
ω2

M2
P

)

(3.10)

with MP = 1.22×1019 GeV, the conventional Planck mass scale in the notation of ref. [41].

Using (2.38) we can translate these bounds to bounds for the parameters of our model, in

an entirely analogous way with the MAGIC case (3.7), (3.8) studied above. Because of the

larger distance from Earth, however, of the AGN PKS 2155-304 as compared to Mk501,

the effects of the expansion of the Universe [43, 38] must be taken into account in this case,

when fitting the results to the observed arrival times of photons. We shall not do this in

this work, since the bounds obtained from the H.E.S.S. measurements (3.10) are not better

from the ones obtained from MAGIC, discussed above. Indeed, in the notation (3.10)

the lower bound of the quantum gravity scale from these null measurements (as far as

delayed arrivals are concerned), assuming quadratic modifications in the photon dispersion

relations, is [41]

MQG(2) > MP/|ζ|1/2 ∼ 1.4 × 109 GeV , (3.11)

which is worse than the corresponding MAGIC bound (3.2), and hence for our purposes

here the MAGIC bound is the most stringent one based on direct high-energy astrophysical

photon time-of-flight measurements.

However, in the models examined in this paper the modified dispersion relations are

expected to characterize also other massive particles that may be allowed to propagate in

the bulk. One may in this way impose more severe restrictions, for instance, by comparing

the velocity of bulk photons with that of other massive particles, such as massive fermions.

For such a comparison, additional considerations are necessary: a) the fermions are local-

ized in one of the two branes or b) the fermions can propagate in the bulk, a case which
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has not been analyzed in this paper. If, for example, one finds that fermions move faster

than light, then severe additional restrictions have to be imposed, due to the emission of

vacuum Cherenkov radiation, for details see ref. [44]. However an investigation toward this

direction is a topic of a completely new work.

Moreover, in case a photon exhibits modified dispersion relations, as advocated here,

then scattering of Highly Energetic photons (with energies higher than 1019 eV) of soft

photons of the Cosmic Microwave Background (γHE + γCMB → e+e−) may lead to entirely

different physics than in the Lorentz-invariant case, as this affects the energy thresholds

for pair production. This may lead to severe constraints on the relevant models [48].

Naively, one could use the bounds, which are presented in ref. [48], to set limits in the

parameters of our model. However, the analysis of such very high energy photons requires

a nonperturbative analysis going beyond the approximations made in the present paper,

and is left for future investigation.

4. Comparison with the velocity of gravitons

Finally, before closing we would like to compare our results for bulk photons with the

velocity of gravitons, which are also allowed to propagate in the bulk. In refs. [31, 34] the

following relation is found:

c
(bulk)
graviton = 1 +

Q2ℓ2

4r6
0

(ǫ−4 − 2ǫ−2) (4.1)

where we have adopted the position of ref. [36], in the case where the null energy condition

on the brane is not violated, for w = −1:

µ =
3

2

Q2

r2
0

(4.2)

On the other hand, as discussed here, bulk photons propagate with a velocity given by

eq. (2.37), or equivalently:

c
(bulk)
light = 1 − 〈δh〉

2
, 〈δh〉 = aG (4.3)

where

〈δh〉 =
1

2kπrc

(

µℓ2

2r4
0

(ǫ−4 − 1) − Q2ℓ2

3r6
0

(ǫ−6 − 1)

)

, ǫ = e−kπrc ∼ 10−16 (4.4)

Taking into account eq. (4.2) we find

c
(bulk)
light = 1 +

Q2ℓ2

12kπrcr6
0

(

ǫ−6 − 3

2
ǫ−4

)

. (4.5)

Then, the difference reads:

δc(lg) = c
(bulk)
light − c

(bulk)
graviton ≃ Q2ℓ2

12kπrcr
6
0

ǫ−6 (> 0) (4.6)
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We observe that if photons propagate in the bulk then gravitons are not superluminous.

However, we can not use this result to set constraints via gravitational Cherenkov radiation,

since the velocity of bulk photons is in general different from the velocities of fermions,

which we have not computed in this work. For more details on this topic the interested

reader is referred to refs. [36, 49].

5. Conclusions

In this article we have examined non-standard Lorentz-violating vacua, induced in the

brane-world framework due to asymmetrically warped bulk space times. We have consid-

ered the effects of such an asymmetric warping on four-dimensional photons, with wave-

functions that extend into the bulk. These assumptions lead to an effective refractive index

of the 4D non-standard vacuum arising in this context, which scales quadratically with the

quantum gravity (length) scale and photon energy. By comparing our results with data

from the MAGIC experiment, pointing towards a delayed arrival time of more energetic

photons from Mk501, as compared to lower-energy ones, we have derived bounds on the

size of the perturbations around the classical solutions, or order 10−8 (c.f. (3.7), (3.8)).

This result seems rather generic, independent of the particular type of the assumed bulk

solution.

In order to set bounds, we have used the MAGIC Telescope observation of photons

from Mk501, because this is the only case at present of an observed effect on a delayed

photon arrival, with the higher energy photons arriving later. The constraints we derive,

in section 3, are the most stringent on quadratically modified photon dispersion relations,

as far as direct photon observations are concerned. We would like to mention that there

are also other experiments which set bounds on quadratically modified photon dispersion

relations. In particular, in subsection 3.2, we compare with the recent data from H.E.S.S.

Telescope [41], and we see that the magic constraints are the most stringent. Finally, in

subsection 3.2, we discuss briefly possible constraints to our model which are not based on

the quadratic dispersion relation of eq. (2.38), including the cases of fermions and ultra

high energy cosmic rays. However, an analysis towards these directions is quite extended

to be included in this work, and is left for further investigation.
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